
26 CROSSTALK The Journal of Defense Software Engineering September 2006

As individual systems and collective system-of-systems become more complex, software-intensive, safety-critical and costly, soft-
ware assurance becomes extremely important. Software assurance helps to reduce the likelihood of failure in terms of safety-
related mishaps, system unavailability, loss of mission accomplishment, or security breech of the system or its related assets.
Unfortunately, many program managers think they do not have the luxury of sufficient dollars and schedule to adequately
address software assurance in the early phases of the acquisition life cycle. One only has to quantify the cost of one system
failure or one system loss to comprehend its ultimate worth. Investing the resources in a software assurance program during
the design, code, and test phases of a software development program will significantly reduce the likelihood of costly mishaps,
failures, or system breeches during system operations and support.

When exposed to the quagmire of
buzzwords, definitions, and termi-

nology attached to most government sys-
tem acquisitions and software develop-
ment programs, there are many that apply
to software assurance. The ones that come
immediately to mind are return-on-invest-
ment, value added, designing it in, system integri-
ty, safe, reliable, available, secure, and risk man-
aged. While these words may be in the
vocabulary of some design teams, there is
usually a lack of passionate dedication in
implementation that is attached to a lack
of sufficient programmatic funding.
Unfortunately, software assurance is one
of those attributes of system design that
is often not an enforced criterion for
delivery, installation, or operation of com-
plex systems. While customers and stake-
holders are screaming for delivery of the
over-budget, behind-schedule items of
interest, software assurance is many times
reduced to a nice to have if there is remaining
time and money.

As our systems and system-of-systems
become more complex, mission-critical,
and safety-critical, it is definitely time for a
paradigm shift toward a commitment to
software assurance. Adequate funding and
passionate commitment are the first steps
toward a successful software assurance
goal. Closely coupled with the two is a
defined and planned process to be imple-
mented to increase the likelihood of soft-

ware assurance success. Contrary to some
development program philosophies, hope is
not an effective methodology to ensure this suc-
cess. Success will be based on a defined
and documented (stated) set of criterion
to be managed within each of the acquisi-
tion life cycle phases. In addition, to fully
understand the success criterion for soft-
ware assurance there has to be a complete
understanding of system failure [1]. This
will be explored further as the elements of
software assurance are defined and dis-
cussed. A successful software assurance
program can then be measured in terms of
cost savings, on-time deliveries, and soft-
ware that is unlikely to contribute to unin-
tended or undesired behavior. These
attributes of success are more likely to be
realized on a software development pro-
gram when the output of the software
assurance tasks actually minimizes the
number of logical or functional flaws in
the design architecture.

There are numerous methods or ways
to increase the likelihood of a successful
software assurance program for software
development projects. These methods can
be described as the essential elements of a
software assurance program (see sidebar).
Individually, each element can and will
make a contribution to success.
Collectively, they will provide a knockout
punch in ensuring the likelihood of soft-
ware assurance.

An Adequately Funded
Contract
If the Request for Proposal (RFP), the
proposal, and resulting contract are not
supportive of software assurance meth-
ods, the result is clearly gloom and doom for
the specialty engineer who is actually
tasked to perform the work. This is an
age-old problem and it definitely needs
modern-day rectification. Business as usual
seldom makes an impact on the engineer-
ing disciplines involved with software

assurance processes, tasks, and products.
Admitting we collectively have a historical
and contractual problem is the first step to
successful mitigation or control of the
issue. So, what can we do differently?

The Government Role
Government agencies need to get serious
about ensuring the likelihood of success
in this critical area. Modern development
programs contain software-intensive, safe-
ty-critical, highly reliable, secure, surviv-
able, and operationally effective require-
ments to go along with system-of-systems
integration. The government needs to
remain fully committed to ensure that
processes are contractually in place within
the software development life cycle to
produce software that is safe, secure, reli-
able, and available to perform as intended.
Boehm, Kind, and Turner in the 7 Myths
about Software Engineering That Impact Defense
Acquisitions [2] state that these processes
must be architected in. In addition, it must
be adequately proposed and funded.
Software assurance should be on the gov-
ernment checklist for RFP development.
The government should ask for it specifi-
cally to be included in the contract pro-
posal, and it should be part of the criteria
for proposal evaluation and source selec-
tion. The RFP should ask that software
assurance be adequately addressed in the
software development plan [3] to be deliv-
ered as part of the contract proposal.

The Contractor Role
Historically, contractors seldom address
software assurance adequately in proposal
preparation and conversely it is definitely
not sufficiently addressed in the cost vol-
ume of the proposal. This is due primari-
ly to program managers’ perception of worth
for software assurance as compared to the
more important, documented, and weight-
ed source selection criteria that are con-
tained in an RFP. If the government

Increasing the Likelihood of Success of a
Software Assurance Program

Steven F. Mattern
Apogen Technologies, Inc.

Essential Elements for
Software Assurance

• An Adequately Funded Contract
• Program Management Support
• Defined Common Terminology
• Specialty Engineering Support
• Risk Management
• A Defined Set of Processes, Tasks,

and Products
• Qualified Practitioners
• Defined and Applicable Metrics

Increasing the Likelihood of Success of a Software Assurance Program

September 2006 www.stsc.hill.af.mil 27

specifically requests that software assur-
ance be included in the software develop-
ment plan and the associated costs for its
implementation, the first step to success is
complete. Most contractors are willing, if
not able, to include software assurance in
their development processes if it is ade-
quately requested in the RFP and funded
in the contract.

Program Management
Support
Tightly coupled with an adequately funded
contract is program and project manage-
ment support. While a perfectly worded
and sufficiently funded contract will pro-
vide motivation to the program manager,
a demonstrated return on investment
helps to solidify the motivational factors
for supporting software assurance tasks.
Program managers must be able to assess
the engineering disciplines involved in
software assurance activities and obtain a
level of confidence that they are getting their
money’s worth with their implementation.
This money’s worth issue is due to the fact
that the assurance activities are imple-
mented to prevent bad things from occur-
ring (mishaps, security breeches, and mis-
sion failures). Therefore, if nothing bad
happens, did the program waste a lot of
resources combating a very unlikely set of
events? Most people can relate well to the
discussions several years ago surrounding
the Y2K issue and resources expended to
combat this very critical issue. But, when
the clock struck midnight and no major
catastrophe occurred, it set off a series of
discussions about whether we had wasted
our critical resources on a non-occurring
event. On the other hand, most will agree
that one single Y2K national catastrophe
would have cost more than we spent fight-
ing against it. A good software assurance
program will combat the likelihood of
software contributing to catastrophic
events.

The essential elements of a software
assurance activity that will help add to the
program manager’s confidence to expend
critical resources include risk management,
including the severity and likelihood of
failure; a defined set of processes, tasks and
products that make sense to the design and
test teams; qualified practitioners with ade-
quate and demonstrated capability; and
defined and applicable metrics – believable
measurements of progress and complete-
ness.

Defined Common Terminology
Historically, specific words have different
meanings for individual design teams or

stakeholders. The simple term software
assurance possesses any number of differ-
ent definitions among commercial con-
tractors, individual design teams, govern-
ment agencies, or international organiza-
tions. Government agencies and their sup-
porting contractors must begin speaking a
common language with defined and docu-
mented definitions. This is essential for
agencies like the Department of Defense
(DoD) to make the necessary strides in
the development of system-of-systems
that will be deployed, operated, and main-
tained by any or all of the armed services
(and some in commercial airspace or sim-
ilar environments). Software assurance
efforts can and will benefit if this occurs.

To demonstrate the problem, a search
was accomplished on the Internet using
Google. The objective of the search was
to find the best definition of software
assurance available. Looking through the
first 100 hits, the following were the only
two definitions worthy of consideration:
• Software Assurance. A planned pro-

gram whereby a customer prepays a
percentage of their license price for
future software releases [4].

• Software Assurance. A planned and
systematic set of activities that ensures
that software processes and products
conform to requirements, standards,
and procedures [5].
However, by knowing exactly where to

look, one can find the following defini-
tions from sources other than Google:
• Software Assurance. ... the level of

confidence that software is free from
vulnerabilities, either intentionally
designed into the software or acciden-
tally inserted at any time during its life
cycle, and that the software functions
in the intended matter [6].

• Software Assurance. Relates to the
level of confidence that software func-
tions as intended and is free of vulner-
abilities, either intentionally or unin-
tentionally designed or inserted as part
of the software [7].
In our Google search, the context of

the Microsoft Corporation software
assurance is prepaying for future applica-
tion updates, and NASA’s definition is
moving toward what we would expect it
to be (in 1993). But as we move forward
to 2006, we are still faced with either con-
flicting or dissimilar definitions. These
example definitions use the same two
words, in sometimes separate environ-
ments with demonstrated confusion a
possible net result.

For the purpose of this article, let us
define software assurance as a planned and
defined set of activities that ensures software is

complete in design to include safety, security, and
reliability. These activities ensure that the
software functions as intended, not per-
forming unintended or undesired func-
tions, and adheres to a predefined set of
standards that can be audited and verified.

Specialty Engineering Support
Specialty engineering is a general term
used for engineering other than the typical
hardware, software, or systems engineers
on a design project. It normally includes
system safety, reliability, logistics support,
human factors, maintainability, security,
and survivability. Unfortunately, these spe-
cialty engineers on most modern DoD
projects do not represent a unified and
integrated front that is needed to perform
the necessary tasks for the software assur-
ance activity. As described previously,
most members of a product team or func-
tional design team find it difficult to even
agree on a definition of what software
assurance is (or is not).

As depicted in Figure 1, software
assurance includes multiple specialty engi-
neering disciplines. Both the system and the
software elements of the discipline are
included as we know that system func-
tionality and the hardware and human
interface elements of the system are close-
ly coupled with the functionality of the
software.

Systems engineering is a key element to
the success of the software assurance
activity. It is here that the functional analy-
sis is accomplished and that safety, security,
and mission-critical functions are identified
and managed in the design process. In
addition, functional, physical, and logical
interfaces are identified and managed as
this is where system failure often initiates.
The lead systems engineer should be inte-
grating and managing the specialty engi-
neering disciplines and ensuring processes,
tasks, and products of each possess value.
The lead systems engineer will also ensure

Figure 1: Specialty Engineering Support

System and

Software Safety

System and

Software

Availability

System and

Software

Supportability

System

Survivability

System and

Software

Reliability

System and

Software Security

Software Assurance Wrapper

Systems Engineering Wrapper

Program Management Wrapper

Perform Functional

Analysis

Categorize Each Software

Function In Accordance

With Level Definitions

Provide Level Definitions

Allocations to the Software

Development Team

Identify Mishaps, Hazards,

And Failure Modes

Perform In-Depth Hazard

Software Causal Analysis

Identify Software-Specific

Safety Requirements to

Mitigate/Control Causes

Design, Code, and Test

Functions According to

Software Level Definitions

Test to Ensure Design

Successfully Incorporates

Safety Requirements

Performed by the System Safety

and Software System Safety Team

Performed by the Software

Development and Test Team

Traditional Software Safety Assurance Process

Traditional Software Safety Hazard Analysis Process

Each Process

Producing a

Safer System

Software Assurance

that the specialty engineers analyze the key
functions of interest with a focus on both
system failure and system success. They
will also ensure that there is no duplication
of effort and that each discipline is tied
into the risk management activities of the
program.

Risk Management
Program management is responsible for
ensuring that programmatic and technical
risk is identified, managed, and mitigated
to acceptable levels of risk on a develop-
ment program. To assist in this task, the
undesired events of each of the specialty
engineering disciplines must be identified
and assessed using the risk criticality
matrices that are common to risk manage-
ment methods.

Table 1 [8] provides an example of the
look and feel of a common criticality matrix.
The matrix is used in risk management to
categorize and prioritize resources based
upon the perception of risk. Risk, in this
context, can be in terms of safety, securi-
ty, availability, reliability, mission risk,
and/or supportability. This is all based
upon the potential of losing functional or
physical attributes of the system, and the
command and control the software has
over them.

Along with the criticality matrix is the
acceptance or management authority over
the risk identified. In the example, unre-
solved high-risk issues could only be
accepted at the Program Executive
Officer (PEO) level whereas project man-
agers would be able to accept unresolved
low-risk issues. The example matrix and
the identification of the corresponding
acceptance authority provided here are
examples only. Individual programs must
specifically define and tailor their own
matrices.

A Defined Set of Processes,
Tasks, and Products
The most important element of software
assurance resides in the defined processes,
tasks, and products that are produced and
implemented by both the software design
team and the specialty engineers. Without
a defined and approved process, the entire
software assurance effort reverts to an ad-
hoc effort at best.

The specific disciplines within special-
ty engineering have one thing in common:
they can all identify the undesired events that
they do not want to occur or experience.
In terms of safety, mishaps are the unde-
sired event; in terms of reliability, it is an
inoperable system; in terms of security, it
is a functional or physical breech leading
to system compromise. Regardless of the
discipline and the undesired event, there
are common tools and techniques to cate-
gorize the severity and likelihood of
occurrence, identify failure modes and
causes, and identify specific system (and
subsystem) related requirements to elimi-
nate, mitigate, or control these events or
conditions to acceptable levels of risk.
Because of this commonality and to sim-
plify the example, only safety will be used
within the context of the following dis-
cussion to illustrate the process. There are
two basic processes to develop safer soft-
ware: a software safety assurance process
and a software safety hazard analysis
process.

Software Safety Assurance Process
The Federal Aviation Administration
(FAA) has been using a software safety
assurance approach to develop safer soft-
ware for years. This process is predicated
on documented software level definitions
that define the requirements, design, code,
and test criteria to the software develop-

ment team (refer to the top half of Figure
2). According to the FAA, the software level
is based upon the contribution of software to
potential failure conditions as determined by the
system safety assessment process [9]. For the
FAA, it is the utilization of RTCA DO-
178B that provides the specific criteria for
software functionality Levels A through E
in descending order of consequence
severity (Note: RTCA organized in 1935
as the Radio Technical Commission for
Aeronautics, but it is now known as
RTCA Inc.). Level A functionality pos-
sesses catastrophic severity consequences
if it were to be lost, degraded, or if it
functioned out of time or out of
sequence. Each level possesses a lesser
consequence of failure. Level B function-
ality possessed critical consequences
whereas Level E functionality possessed
no safety impact should it fail. Once the
safety team defines the software level def-
inition of a specific function, the software
development teams implement the design,
code, and test criteria required for FAA
certification. This process has numerous
benefits, including the following:
• The identification and categorization

of functionality based upon safety
consequences.

• Increased levels of development and
test rigor for high-consequence func-
tionality.

• The functional and physical partition-
ing of high-consequence functionality
to reduce the likelihood of non-critical
functions contributing to catastrophic
or critical failure.

• The prioritization of critical resources
(dollars, schedule, manpower) based
upon sound risk management princi-
ples.

• Safer software and thus safer systems.

Software Safety Hazard
Analysis Process
The DoD has relied on a hazard analysis
process to develop safer software (refer to
bottom half of Figure 2). This approach
relied on the identification of system-level
mishaps and their corresponding hazards.
Mishaps and hazards are then categorized
in terms of severity and likelihood of
occurrence. By analyzing snapshots of a
design as it matures, specific hardware,
software, and human error causal factors
are identified. Once these causal factors
are identified in the context of the hazard
initiation and failure pathway to potential
mishap, then specific safety-related soft-
ware requirements can be identified to
mitigate or control the hazard to accept-
able levels of safety risk. These safety-

28 CROSSTALK The Journal of Defense Software Engineering September 2006

Table 1: Example of a Criticality Matrix

Risk Management – Criticality Matrix

Severity

Probability Catastrophic Critical Marginal Negligible

Frequent 1 3 8 15

Probable 2 5 11 16

Occasional 4 7 12 18

Remote 6 10 14 19

Improbable 9 13 17 20

1-5 High Risk Accepted— PEO Level

6-12 Medium Risk Accepted— Program Manager Level

13-18 Low Risk Accepted— Project Manager Level

19-20 Very Low Risk Accepted— Systems Engineer Level

Table 1: Example of a Criticality Matrix [8]

Increasing the Likelihood of Success of a Software Assurance Program

related requirements can be in the form of
specific design architecture changes, or
the addition of fault detection, fault toler-
ance, or fault recovery. These require-
ments are traced through the design
implementation, the coded product, and
then to the test and verification efforts.
Benefits of this approach include the fol-
lowing:
• Safety-critical functions can be graph-

ically modeled for ease of in-depth
safety analysis [10].

• The causes of failure can be identified
and mitigated at their specific initia-
tion points.

• Failure of software functionality is
analyzed in context with its hardware
and human interfaces.

• Fault detection, isolation, annuncia-
tion, tolerance, and recovery can be
more precise in its design implementa-
tion.

• Safer software, thus a safer system.

Integrating the Two Processes
The system safety community is begin-
ning to realize that each of the two
processes does indeed result in safer soft-
ware. But, to obtain the safest software
possible, modern-day developments need
to integrate both the software safety
assurance and the software safety hazard
analysis processes into the software devel-
opment and test activities [11].

Safety is used in this example of
processes because the software safety
community may have more mature meth-
ods, tools, and techniques to address soft-
ware assurance. Because the software
safety community processes mature tools
and techniques, each specialty engineer-
ing discipline should closely evaluate
what the safety community is using as it
would either directly apply or could be
modified slightly to yield exceptional
results.

The Tasks and the Products
The defined processes for software assur-
ance represents the what that needs to be
accomplished. The specific how to tasks to
fulfill the process are defined and imple-
mented by individual teams. There are
many ways to accomplish these tasks as
long as the process is being followed.
Specific tools such as Fault Tree Analysis
and Failure Modes and Effects Analysis
are common to the industry and provide
the means to completely understand the
context of failure. In addition, it is impor-
tant that the tasks accomplished produce
the engineering evidence and audit trail
products for either system certification or
customer acceptance.

Qualified Practitioners
Specialty engineering is not a profession
where body count is the most important fac-
tor. One good, trained, qualified per-
former is much better than three
untrained, struggling practitioners.
Contractors have a bad habit of putting
engineers with dwindling contractual cov-
erage into positions with specialty engi-
neering just to keep them employed. This
is far from optimal and should not be
accepted by the stakeholder of the con-
tract.

Also, a lesson learned (and re-learned
over and over again) is associated with the
original designer being tasked to do the
safety or reliability analysis due to the lack
of a qualified person being on staff. To
put it bluntly, asking the designer to per-
form failure analysis on their own design
is like asking a brand new mother to iden-
tify and document how ugly her new baby
is. Just as new mothers only see the beau-
ty of their new child, design engineers
only see the natural beauty of their design.
Asking them to see or identify failure
modes and conditions (ugliness) of their
design will historically not yield the true
results required for a high-fidelity failure
analysis.

The bottom line here is that specialty
engineers (system safety, reliability, vulner-
ability, security, etc.) are trained in the art
and science of systematically breaking the
system down to identify the failure condi-
tions and their contributing failure path-
ways and initiators. They are trained to
categorize and prioritize risk based upon
severity and likelihood of occurrence in
order to facilitate wise decision making
from management and design engineering
in risk mitigation and control. These
experts are the individuals that should be
doing the work.

Defined and Applicable
Metrics
In order to confirm or obtain confidence
in a defined software assurance process,
there must be applicable metrics that
record the score of how well we are doing.
Applicable metrics provide the technical
and managerial decision makers with cer-
tainty that the resources expended
(upfront in the development process) are
actually providing the necessary value to
the development effort. In addition, these
provide the ultimate stakeholder or cus-
tomer with the confidence that the system
is meeting its assurance requirements or
objectives.

Here again, it is important to have
qualified individuals for any given project
who are adept at establishing credible and
verifiable metrics. To support this
premise, one must consider that many
customers desire or require quantified (or
quantifiable) metrics that are supported by
engineering evidences and artifacts. It is
extremely important to have high-fidelity,
quantified results that can be supported
and verified by a repeatable process.

On a recent project, my company used
a specific tool to provide a quantifiable set
of metrics to the customer. This tool is
modifiable whereby the metric outputs are
based upon the inputs of specific assess-
ment criterion. By evaluating the number
and types of findings, the level of risk mit-
igations and controls, and the overall fault
tolerance of the system, a specific output
score is generated. While this effort was
directed at one phase of the acquisition
life cycle, tools like this can be modifiable
and used in each of the software life cycle
phases.

Regardless of the tools or metrics
used, they should include ways to measure
each functional discipline of the software

September 2006 www.stsc.hill.af.mil 29

Figure 2: System Safety and Software Safety Assurance Processes

Perform Functional

Analysis

Categorize Each Software

Function In Accordance

With Level Definitions

Provide Level Definitions

Allocations to the Software

Development Team

Identify Mishaps, Hazards,

And Failure Modes

Perform In-Depth Hazard

Software Causal Analysis

Identify Software-Specific

Safety Requirements to

Mitigate/Control Causes

Design, Code, and Test

Functions According to

Software Level Definitions

Test to Ensure Design

Successfully Incorporates

Safety Requirements

Performed by the System Safety

and Software System Safety Team

Performed by the Software

Development and Test Team

Traditional Software Safety Assurance Process

Traditional Software Safety Hazard Analysis Process

Each Process

Producing a

Safer System

Software Assurance

30 CROSSTALK The Journal of Defense Software Engineering September 2006

assurance activity. That is, safety, security,
reliability, etc. should all be assessed, mea-
sured, and scored for decision-making and
auditing purposes.

Summary
Software assurance is a maturing discipline
that is vital for complex software develop-
ment projects that possess safety, security,
reliability, and mission critical attributes.
Although the essential elements for a soft-
ware assurance program presented here are
described in a basic abstract format, each
element should be further defined, expand-
ed, and refined for individual DoD soft-
ware-development projects. Each element
presented is important to the success for-
mula. However, if one element of this for-
mula is absent, do not let that hinder the
inclusion of the remaining elements. By
implementing these elements, program,
project, and technical managers can increase
the likelihood of having a defendable and
high fidelity software assurance program.u

References
1. Raheja, Dev G. Assurance Technolo-

gies – Principles and Practices. Mc-
Graw-Hill, 1991.

2. Boehm, B., Peter Kind, and Richard
Turner. “Risky Business; 7 Myths
about Software Engineering That
Impact Defense Acquisitions.” Project
Manager (May-June 2002).

3. Rosenberg, Linda H. “Lessons
Learned in Software Quality
Assurance.” Software Tech News 6.2
(Dec. 2002).

4. Semilof, Margie. “Microsoft Licensing:
A Special Report: Licensing 6.0 and

Software Assurance: Who Should
Renew?” 16 Sept. 2003 <http://search
winit.techtarget.com/originalContent/
0,289142,sid1_gci927989,00.html>.

5. National Aeronautics and Space
Administration. “Software Assurance
Standard: NASA-STD-2201-93.” 1992.

6. Committee on National Information
Security Systems. “National Infor-
mation Assurance Glossary.” Instruc-
tion No. 4009, 2006 <www.cnss.gov/
Assets/pdf/cussi_4009.pdf>.

7. Department of Defense (DoD).
“DoD Software Assurance Initiative.”
13 Sept. 2005 <https://acc.dau.mil/
CommunityBrowser.aspk?id=25749>.

8. Mattern, Steven F. “Introduction to
Risk Management.” System Safety
Management Course. University of
Washington, Seattle, WA. Mar. 2006.

9. RTCA/DO-178B. “Software Consid-
erations in Airborne Systems and
Equipment Certification. Require-
ments and Technical Concepts for
Aviation.” 1 Dec., 1992.

10. Mattern, S, E. Elcock, and E. Larsen.
“IMPACT – A New Tool for the Soft-
ware Safety Engineering Toolbox,
Integrated Message and Process Anal-
ysis Control Technique.” Proc. 20th
International System Safety Society
Conference Denver, CO, 2002.

11. Mattern, Steven F. “Comparing
Software Safety Engineering with
Software Integrity Methods and
Techniques The Implications to
Future.” Department of Defense
Acquisitions, 22nd International
System Safety Society Proceedings.
Providence, RI, 2004.

About the Author

Steven F. Mattern is
vice president with Apo-
gen Technologies, in
McLean, VA. He man-
ages the Software and
Systems Analysis Divi-

sion that specializes in software develop-
ment and software assurance technolo-
gies. Engineers in his division have been
performing software assurance-related
tasks for more than 12 years for both
government and commercial clients.
Mattern is a Fellow member of the
International System Safety Society and
holds the position of Director of
Education and Professional Develop-
ment for the Society. He is the integrat-
ing author of the Tri-Services Software
System Safety Handbook, and currently
teaches the System Safety Management
and Software Safety Engineering
Courses at the University of Washing-
ton. Mattern has a Bachelor of Science
degree in Industrial/Electronic Tech-
nology from the University of Wyoming
and a Master of Arts in Computer
Resource Management from Webster
University.

Apogen Technologies, Inc.
1308 Bellevue BLVD N
Bellevue, NE 68005
Phone: (402) 502-3657
E-mail: steve.mattern@apogen.com

